
Received: 4 July 2016 Revised: 15 November 2016 Accepted: 25 February 2017

DOI: 10.1002/cpe.4149

S P E C I A L I S S U E P A P E R

Semi-asynchronous approximate parallel DEVS simulation of
web search engines

Alonso Inostrosa-Psijas1 Veronica Gil-Costa2 Mauricio Marin1,3 Gabriel Wainer4

1CITIAPS, Universidad de Santiago de Chile,

Santiago, Chile
2CCT-CONICET and National University of

San Luis, Argentina
3CeBiB, DIINF, Universidad de Santiago, Chile
4Department of Systems and Computer

Engineering, Carleton University, Ottawa, ON,

Canada

Correspondence

Alonso Inostrosa-Psijas, University of Santiago,

Chile.

Email: alonso.inostrosa@usach.cl

Summary

Discrete Event System Specification (DEVS) is a formalism for the modeling and analysis of dis-

crete event systems. Parallel DEVS (PDEVS) is an extension of DEVS for supporting Parallel and

Discrete Event Simulation, which is a powerful tool for evaluating the performance of large scale

systems. In this work, we propose an optimistic approximate and semi-asynchronous parallel

strategy. The level of optimism is efficiently managed throughout the simulation execution, and it

is automatically adjusted based on the simulation evolution. Load balance and model partitioning

is automatically made by means of an algorithm that takes advantage of the communication pat-

tern of the simulated model. Our proposal is designed for Web search engines, which are complex

and highly optimized systems devised to operate on large clusters of processors and dealing with

dynamic and unpredictable user query bursts. The results show that our proposal is able to reduce

both execution times and memory usage of standard optimistic simulations of Web search engine

models, at the expense of small errors.

KEYWORDS

approximate parallel simulation, DEVS, PCD++, web search engines

1 INTRODUCTION

Sequential discrete-event and process-oriented simulations have

proved to be useful for performance evaluation studies of small

scale models. However, for studies of large scale models, parallel

discrete-event simulation (PDES) has the potential to provide better

results, because it allows overcoming critical resource constraints

such as processing time and memory footprint of the simulation code.

A PDES program is normally built as a collection of logical processes

(LPs), each of which is in charge of simulating a portion of the complete

model under study. Logical processes communicate with each other by

exchanging time-stamped event messages. Processing events in paral-

lel in global time-stamp order is complex, and synchronization of the

time-stamps of the different events executing across processors is not

trivial since causality related events might form different sequences.

There have been 2 major approaches for solving the causality

problems caused by these parallel and distributed simulations, the

conservative1 and the optimistic protocols.2 The main purpose of both

methods is to guarantee the event causality constraint. The conser-

vative protocols ensure a safe simulation of events with no causal-

ity errors by imposing time-related rules that prevent the late arrival

of events to the processors. To this end, the simulation in any given

LP is blocked until it can be guaranteed that no event with a smaller

time-stamp will be received later in the LP. On the other hand, the

optimistic protocols (in particular Time Warp—TW—and other similar

approaches) process all the events available in processors and if there

are causality errors they are corrected. When TW detects that the

simulation of events has been missed in the chronological simulation

time, a reverse computation called rollback is performed in the involved

processors to resimulate previous events, but this time including the

missed ones in the right chronological order.

In Marin et al,3 the performance of TW was increased by removing

the rollback mechanism while applying a windowing scheme to restrain

optimistic simulation time-advance to keep the rate of potential roll-

backs very low. This leads to approximate simulations. The benefits of

this are very fast simulations of large and complex models, executed on

clusters of processors, which enable their application to online capacity

planning studies.

In this work, we propose an optimistic approximate and semi-

asynchronous parallel simulation strategy for parallel Discrete-

Event System Specification (PDEVS) models. Discrete-Event System

Specification is a simulation worldview offering a number of advan-

tages for modeling and simulating systems,4,5 such as hierarchical and

modular development of the model, a formal specification mechanism

and a way to specify models that enables them to be embedded into

ones of higher level. Several implementations of DEVS can be found

Concurrency Computat Pract Exper. 2018;30:e4149. wileyonlinelibrary.com/journal/cpe Copyright © 2017 John Wiley & Sons, Ltd. 1 of 15
https://doi.org/10.1002/cpe.4149

https://doi.org/10.1002/cpe.4149


2 of 15 INOSTROSA-PSIJAS ET AL.

since it is independent from the simulation mechanism, one of them is

CD++.6

In particular, our proposed strategy is devised to model and simu-

late Web search engines (WSE), which are complex and highly opti-

mized systems operating over large clusters of processors. Web search

engines manage dynamic and unpredictable user query bursts. Their

performance evaluation is of paramount importance both for data cen-

ter deployment and operation, and research tasks. A DEVS model of

a WSE has been previously developed and evaluated with CD++.7

This model was modified to be efficiently simulated in parallel by

using PCD++8 and different load balance algorithms were evaluated in

Inostrosa-Psijas et al.9

In this article, we show that efficient parallel simulations of DEVS

models can be attained using an approximate and semi-asynchronous

approach. In particular, besides the Spectral Clustering10 load balance

algorithm presented and evaluated in Inostrosa-Psijas et al,9 we intro-

duce a strategy for modeling and simulating WSE based on (1) an

approximate approach to reduce the running time and memory con-

sumption of parallel simulations. No rollback mechanisms are used to

correct time causality errors.3 In particular, the simulation of WSE can

easily trigger rollbacks because of causality related events (created by

the same query) are propagated throughout several LPs. (2) Window

barriers used to reduce the events simulated in nonchronological order

(straggler events). A dynamic algorithm evaluates how frequently the

time increment of the window barriers has to be computed to obtain

a good trade-off between the running time of the simulations and

the effectiveness of the estimated metrics. (3) A semi-asynchronous

algorithm, which relaxes the time window barrier. This algorithm aims

to reduce the number of straggler events and the number of global

synchronization barriers executed by synchronous approximate simu-

lation approaches.3 To the best of our knowledge, this work is the first

attempt to include an approximate simulation approach for WSE mod-

els into the PCD++8 framework. Results show that our proposal is able

to reduce both execution times and memory usage of standard opti-

mistic simulations. The approximate simulation results introduce an

error of 2%.

The remainder of this article is organized as follows. In Section 2, we

present a brief introduction to parallel simulations and review related

works. In Section 3, we introduce the PDEVS formalism. Section 4

describes the components of Web search engines. Section 5 presents

our proposed parallel and approximate simulation algorithm. Section

6 details our experimental setup and evaluation. Conclusions follow in

Section 7.

2 RELATED WORK

Discrete-event simulation (DES) is a tool used to dynamically under-

stand the behavior of complex discrete dynamic systems whose models

may not be solved analytically. DES is a computing program that emu-

lates the behavior of a physical system or a real system. In DES, a physi-

cal system is represented by a collection of entities that interact to each

other to accomplish a global objective. States of the physical system are

represented by a set of state variables that are used to describe the

system state at any time. Changes of states in the physical system are

represented by the execution of discrete time-stamped events. How-

ever, one of the main disadvantages of DES is the computational time

required for simulating large-scale and highly complex systems.

Parallel discrete-event simulation is used to overcome the time con-

suming problem of DES. A PDES consists of executing single DES

program on a parallel computer. The simulation program is normally

decomposed into a set of concurrent processes called LP that can be

executed independently on different processors. Each LP is composed

of a separate set of state variables for the simulation program. Events

take place within LPs, change the states of the LPs, and LPs may sched-

ule the occurrence of new events in other LPs by sending event mes-

sages to them. Once the LPs are placed onto the processors, one is faced

with the nontrivial problem of synchronizing the occurrence of events

that take place in parallel so that the final outcome is equivalent to

that of a sequential simulation of the same events. Thus, the challenge

in PDES is to execute LPs concurrently and lead to correct simulation

results. To this end, synchronization protocols must be used to ensure

that the parallel simulation of events is executed in correct time-stamp

order (not violating the temporal causality constraint). Synchronization

protocols can be classified as conservative or optimistic.11

Conservative protocols1 strictly avoid the possibility of any causal-

ity error by using some strategy to determine if it is safe to process an

event. Typically, the process is blocked until all execution conditions are

satisfied (there is no event for which causal dependencies are still pend-

ing). It requires developers to enhance model definition with additional

constructs such as lower bounds on the time the effects of events are

propagated across the model.

In optimistic algorithms, like TW,2 the occurrence of events is opti-

mistically processed as soon as they are available at the LPs and then

the LPs locally re-execute events whenever the simulation of earlier

events is missed in one or more LPs. In other words, the simulation

time may advance at differing time intervals in each LP. Whenever an

LP receives a “straggler" message carrying an event e with time-stamp

in the “past," the LP is “rolled back" into the state just before the

occurrence of e and the simulation of the LP is resumed from this

point onwards. That is, all the events with time-stamps later than e's

time-stamp are resimulated. The LPs save their states periodically to

support rollbacks. In addition, any change propagated to other LPs

as a result of processing erroneous events is corrected with a similar

rollback method. To this end, special (anti-)messages are sent to the

affected LPs to notify them of the previous sending of erroneous mes-

sages. During simulation, a global virtual time (GVT) is calculated peri-

odically. Its value is such that no LP can be rolled-back earlier than it, and

thereby the processed events and anti-messages with time-stamps less

than GVT are discarded to release memory. global virtue time steadily

advances forward regardless the amount of rollbacks. When the rate of

rollbacks is kept small, performance becomes very efficient.

Parallel discrete-event simulation has been widely used in the past

years to evaluate the performance of large scale systems.12,13 In

fact, there are various proposals to make parallel simulation more

efficient.14–16 One of them is the Lightweight Time Warp or LTW17

strategy, it only saves external events (those sent among LPs), internal

events are not saved into the state variables since they can be recre-

ated from external events after a rollback occurrence. The efficiency of



INOSTROSA-PSIJAS ET AL. 3 of 15

parallel simulation has deserved recent attention in the context of clus-

ters of multicore processors.18,19

Alternatively, the idea of ignoring rollbacks was first proposed by Rao

et al,16 where the introduced error was evaluated for small queuing

network models parallelized using up to 3 LPs. They observed errors

below 5%. Given the small number of LPs used in the experiments, the

problem of controlling the correct execution of events was not relevant,

as in this case, simulations are close to a sequential one in causal-

ity dependencies across LPs. Relaxation of event causality in LPs has

been studied for systems in which events may occur in time intervals.20

This is called temporal uncertainty, and represents systems where it is

equally valid for these events to occur at any point in the respective

intervals.

In a previous study,14 the authors proposed a relaxation strategy

based on the observation that 2 events must be executed according to

their time-stamps if their out of order execution would produce a dif-

ferent result. This leads to explicitly identify which events concurring at

the same LP object may be executed in any order, involving extra work

for the user.

In the Adaptive Time Warp21 the LPs with excessive rollback rate are

suspended some time. The length of this interval is determined from

statistics collected during execution, and its specific value intends to

minimize the cost of either remain blocked or process the rollbacks. The

authors in a previous study22 indirectly control the optimistic execution

by limiting the number of memory buffers assigned to keep uncom-

mitted events. The LPs block themselves when they have no buffers

available and wait for the next fossil collection. The fossil collection

process frees the memory that stores events with time-stamps lower

than the GVT. The Moving Time Window protocol23 was proposed for

synchronous simulations. The processing of events is driven by a time

interval [t, t + Δ). Each processor is allowed to process the occurrence

of events e with time-stamps t ⩽ e.t < t + Δ. Other similar schemes are

in previous studies.24–27

Recently, in Marin et al,3 a new PDES approach called approximate

parallel simulation was introduced. The implementation of the parallel

simulator is based on multithreading and a bulk-synchronous message

passing strategy to automatically conduct simulation time-advance.

The simulation design is based on the Bulk Synchronous Parallel (BSP)

computing model.28 Under the BSP model, computation is organized as

a sequence of supersteps. During a superstep, processors may perform

computations on local data and/or send messages to other processors.

At the end of a superstep, there is always a synchronization barrier. It

permits that messages sent during the current superstep are available

for processing at their destinations at the next superstep. The underly-

ing communication library ensures that all messages will be available at

their destinations before starting the next superstep. In each processor,

there is one master thread that synchronizes with all other P − 1 mas-

ter threads to execute the BSP superstep and to exchange messages.

Then, in each processor and superstep the remaining T−1 threads syn-

chronize with the master thread to start the next superstep, though

they may immediately exchange messages during the current super-

step as they share the same processor main memory. We are interested

in applying these parallel simulation methods with a formal modelling

technique: the PDEVS29 to simulate large-scale WSE.

3 PDEVS OVERVIEW

The DEVS4 is a modeling and simulation formalism of discrete-event

dynamic systems. Discrete-Event System Specification provides the

means for describing discrete-event systems by using 2 different kind

of elements to model a real system: atomic and coupled models. Atomic

models are the most elemental and basic entity to represent systems.

Atomic models can react to internal and external events, which allows

to define a way of specifying systems whose states change upon the

reception of an input event or the expiration of a time delay.

Parallel Discrete-Event System Specification is a DEVS extension

for supporting the simultaneous processing of events handled by an

additional function. In PDEVS, an atomic model is formally defined

according to the following structure29:

PDEVS = < X,Y, S, 𝛿ext, 𝛿int, 𝛿con, 𝜆, ta >,

where

X is the set of external events;

Y is the set of output events;

S is the set of sequential states;

𝛿ext ∶ Q × Xb → S is the external state transition function, where

Q ∶= {(s, e) | s ∈ S, 0 ⩽ e ⩽ ta(s)} and e is the elapsed time

since the last state transition.

𝛿int ∶ S → S is the internal state transition function;

𝛿con ∶ S → Xb is the confluent transition function;

𝜆 ∶ S → Yb is the output function;

ta ∶ S → R+
0

∪ ∞ is the time advance function.

The semantics for this is as follows. At any given time, an atomic

PDEVS model is in state s ∈ S and, if no external events are received,

it will remain in that state for a period of time as defined by ta(s). The

ta(s) function can take any real value in the interval [0,∞]. A state for

which ta(s) = 0 is called a transient state. On the contrary, if ta(s) =
∞, then the system will stay in that state forever unless an external

event is received. In such case, s is called a passive state. Transitions

that occur due to the expiration of ta(s) are called internal transi-

tions. When an internal transition occurs, the system outputs the value

𝜆(s), and changes to a state defined by 𝛿int(s). A state transition can

also take place when an external event occurs. In this case, the new

state is defined by 𝛿ext according to the input value, the current state,

and the elapsed time. Parallel Discrete-Event System Specification also

includes the so-called confluent transition function, that allows the

modeler to define the behavior of the system when collisions occur, that

is, when a component receives external events at the same time that an

internal transition is set to happen.29 The confluent function takes a bag

of inputs (Xb), which is a set of possible combinations of inputs occurring

at the same time.

Coupled models are composed of 2 or more atomic or coupled

models,4 and can be regarded as another PDEVS model because of the

closure property. Parallel Discrete-Event System Specification coupled

models can be integrated to form a model hierarchy, allowing model

reuse. A coupled model is defined as a structure of the form

DN =< Xself, Yself, D, {Mi}, {Ii}, {Zij} >,

where D is a set of components, and



4 of 15 INOSTROSA-PSIJAS ET AL.

for each i ∈ D,

Mi is a component with constraint that

Mi =< Xi,Yi, Si, 𝛿iext, 𝛿iint, 𝛿icon, 𝜆i, tai > is a PDEVS model;

for each i ∈ D ∪ {self},

Ii is the set of the influences of i;

for each j ∈ Ii,

Zi,j is a function, i − to − j output-input translation.

Ii is a subset of D ∪ {self}, i is not in Ii,

Zself,j ∶ Xself → Xj

Zi,self ∶ Yi → YselfZi,j ∶ Yi → Xj

Coupled models may have their own input and output events, as

defined by the Xself and Yself sets. Upon the arrival of an external event,

a coupled model has to redirect the input to one or more of its compo-

nents. In addition, when a component produces an output, it has to be

mapped as another component's input or as an output of the coupled

model itself. Input and output mappings are defined by the Z function.

Coupled models represent the structure of a system, whereas atomic

models represent its behavior.

In traditional DEVS models, there can be ambiguity in coupled mod-

els when there is more than 1 component scheduled for an internal

transition at the same time (collision). The first model to make its inter-

nal transition will produce an output that may be translated to an exter-

nal event being received by another component model that is already

scheduled for an internal transition at that time. But then, should this

second model process the external transition first with e = ta(s)? or is it

the internal transition that should be executed first and then the exter-

nal transition with e = 0? The DEVS formalism solves this problem by

using a function called select. With this function, only 1 model of the

group of imminent models will be allowed to have e = 0. The other

imminent models will be divided into 2 groups: those that do receive

the external output from this model, and those that do not. The first

group will execute their external transitions functions with e = ta(s)
and the second group will be among the group of imminent models for

the next simulation cycle, which may require again the use of the select

function to decide which model will execute first.4,5 The select func-

tion is replaced in PDEVS29 by the confluent transition function (𝛿con)

to solve the collision of events. The confluent function allows all immi-

nent components to produce their outputs, which are sent through

the corresponding mapping of input/output ports (using the coupling

information) to the corresponding components.

Discrete-Event System Specification and its extension PDEVS, are

independent from any simulation mechanism. They can be imple-

mented with several simulation tools, tackling different needs, and

providing advantages on specific scenarios. A noncomprehensive

list includes

• DEVSJAVA30 which allows hierarchical model definition and visual-

ization.

• JDEVS31 is a visual DEVS framework.

• SimStudio32 which is a web-based framework.

• CD++33 which supports simulation of DEVS and Cell-DEVS34

models.

• Parallel CD++ (PCD++),8 is the parallel/distributed version of CD++

supporting conservative and optimistic protocols.35,36

4 WEB SEARCH ENGINES

Large-scale WSE like Bing, Google, or Yahoo! support heavy user

demands and they must fulfill them within a reasonable time frame. To

accomplish this, queries are processed as soon as they arrive to keep

throughput at query arrival speed and to maintain query response time

below a given upper bound. Web search engines must deal efficiently

and effectively with sudden and drastic increases in query traffic from

users, mostly related to natural disasters or social incidents that attract

worldwide interest. Because of this, WSEs normally operate at a steady

average hardware usage of around 30% to 40% to efficiently respond to

increases in query traffic.37

Data centers for large WSEs contain thousands of processors

arranged in high-communicating groups called services. In general,

each service is devoted to a single specialized operation related to the

processing of user queries arriving to the search engine. Services are

software components executing operations such as (1) calculation of

the top-k documents that best match a user query; (2) routing queries

to the appropriate services and blending of results coming from them;

(3) construction of the result Web page for queries; (4) advertising

related to query terms; and (5) query suggestions, among many other

operations. The realization of these services may involve the use of

different algorithms and data structures devised to support efficient

query processing. To deal with the complexity of WSEs, discrete-event

simulation can be used as a suitable tool for assisting the development

cycles associated with the algorithm engineering required to achieve an

efficient and scalable query processing.38,39

Figure 1 shows an example of an organization of services for a

WSE,40,41 where typical services are the Front Service (FS), the Cache

Service (CS), and the Index Service (IS). The FS comprises several repli-

cated nodes. It handles and manages submitted user queries by routing

them to the appropriate service (CS or IS), performs the blending of

partial results returned from the IS, and it also manages the delivery

of final top-k results to the user. The CS implements a partitioned dis-

tributed cache that stores previously computed results for the most

popular queries (they are query results composed of document IDs).

The IS holds an index built on top of the document collection (e.g. HTML

documents from a big sample of the Web) and it is responsible of cal-

culating the top-k document results (document IDs) that best match

a query.

These services are deployed on clusters of computers and its pro-

cessing nodes are allocated in racks connected via network switches.

The CS and IS are partitioned and replicated in arrays of computer ser-

vice nodes. Partitioning allows to host larger indexes and more caching

capacity. Replications helps reducing query response times and increas-

ing throughput of queries. It also helps supporting fault tolerance. Thus,

the CS and IS are implemented as arrays of P × R processing nodes,

where P is the level of partitioning and R is the replication level of each

partition of a service.

4.1 Query Processing

Figure 1 depicts the operations performed by a WSE to process a given

query. Front service nodes independently receive user queries (step 1)

and send back the top-k document results to the user. Once a query

arrives to a FS node, a CS node is chosen to determine whether a



INOSTROSA-PSIJAS ET AL. 5 of 15

FIGURE 1 Query processing

query has been previously processed and its computed results are still

cached (step 2). A simple Least Recently Used approach can be used.

Additionally, the memory cache partition can be performed by means

of a distributed memory object caching system named Memcached,42

where a given query is always assigned to the same CS partition. Mem-

cached makes use of a hash function with uniform distribution over the

query terms to select the partition that should contain the precom-

puted document results for the query. Therefore, at any given time, dif-

ferent queries can be solved by different replicas of the same partition.

Replicas are selected in a round-robin way.

If the query document results are cached, the CS node sends the

top-k document IDs to the FS node (step 3), which sends the query

results to users (step 7). If the query results are not cached, the CS

node sends a hit-miss message to the FS. Then, the FS node sends an

index search request to the IS cluster (step 4). Each query is sent to all

of the P IS partitions and, in parallel, a random replica in each partition

determines the local top-k document IDs.

The IS uses an index that allows the fast mapping among query terms

and documents. Due to the amount of documents and the index size

are huge, they are evenly distributed onto a large set of P processor.

The index stored in each IS node is the so-called inverted index.43 The

inverted index is a data structure used by all well-known WSEs. It is

composed of a vocabulary table (which contains the V distinct rele-

vant terms found in the document collection) and a set of posting lists.

The posting list for term c ∈ V stores the identifiers of the doc-

uments that contain the term c, along with additional data used for

ranking purposes. To solve a query, posting lists must be fetched for the

query terms, then intersection among them is computed, and finally,

the ranking of the resulting intersection set is performed by using algo-

rithms like BM25 or WAND.44 Hence, an inverted index allows for the

very fast computation of the top-k relevant documents for a query,

because of the precomputed data. The aim is to speed up query pro-

cessing by first using the index to quickly find a reduced subset of

documents that must be compared against the query, to then deter-

mine which of them have the potential of becoming part of the global

top-k results.

Finally, the local top-k results computed by the IS are collected by the

FS node (step 5) to determine the global top-k document IDs (by means

of a merge operation) to update the CS (step 6) and to deliver the final

results to the user (step 7).

4.2 Modeling WSE with PCD++

In this section, we present a model of a WSE implemented with PCD++

devised to be executed in a distributed cluster of processors. Our

PDEVS-based model of the WSE, as shown in Figure 2, was built using

atomic models and by including the input/output ports inside the atomic

models. Shaded areas of Figure 2 are intended only for the reader to

easily identify the different services in the figure. The Query Gener-

ator atomic model generates user queries and delivers them to the

FS by selecting its replicas in a round-robin fashion. Queries are sent

to the FS through the corresponding output ports (out1, … , outn).
The query inter-arrival time is simulated by using an exponential

distribution.

Once an FS replica receives a new query (on its input port), it is imme-

diately sent to a single replica of the CS through one of its outCSij output

ports. The FS replica chooses the ith partition by computing a hash

function on the query terms, and the jth replica—of the selected CS

partition—is chosen in a round-robin way. Then, the CS replica responds

the query to the FS with a “hit/miss” message. In case there is a hit,

the query now contains the top-k document results for the query, and

the FS responds with those results to the user. However, if the answer

has a miss, the query is sent to the P partitions of the IS through the

outISij output ports of the FS. Index Service replicas are also selected in a

round-robin way. Once the FS node has received the partial results from

all of the selected IS replicas, it performs a merge operation to produce

the top-k final document results.

5 PCD++ SEMI-ASYNCHRONOUS
APPROXIMATE SIMULATIONS

In this section, we present our simulation strategy for the PDEVS

framework PCD++,8 devised for simulating large scale Web search



6 of 15 INOSTROSA-PSIJAS ET AL.

FIGURE 2 Parallel Discrete-Event System Specification model of a Web search engine

engines. It is based on (1) an approximate algorithm, which uses a time

window barrier to prevent the occurrence of straggler events; (2) a

dynamic algorithm used to adjust the time window increment accord-

ing to the stable/unstable state of the simulation (we assume a sim-

ulation is stable when similar number of events are executed during

different time intervals); (3) a semi-asynchronous simulation scheme;

and (4) a load balance algorithm.

The proposed strategy has an optimistic approach. When an LP

receives a straggler event, instead of using expensive recovery mecha-

nisms such as rollbacks, it simply reset the local clock without executing

additional operations. In other words, the local clock takes the time

value of the straggler event. However, by not applying any mechanism

to correct the temporal causality errors of events, imprecision can be

introduced into the computed metrics.

5.1 Approximate algorithm

In a previous work,3 the approximate synchronous strategy does

not implement mechanisms to satisfy causality constraints, instead it

allows to process stragglers events. Thus, whenever an LP detects a

straggler event, the local clock of the LP is set to the value of the

time-stamp of the straggler event. As a consequence, the estimated

metrics in the simulation are not identical to those of a sequential sim-

ulation. They are approximate. To control the simulation time-advance

and the error introduced in the estimated metrics, the approximate

synchronous strategy uses a time window barrier B. logical processes

can only process events with time-stamp lower than the value of the

time window B.

In Marin et al,3 the time window B is updated with a time incre-

ment W. W is calculated every n steps or supersteps according to the

computer model BSP.28 The variable n is a user-defined variable. Each

superstep ends with a barrier synchronization. In this case, the barrier

synchronization of a superstep si corresponds to the window barrier Bi.

Thus, each superstep is delimited by B and at the end of each superstep

the time window barrier is updated to B = B + W.

To compute W, each processor stores tuples (t, s, d) for each message

sent to another processor, where t is the time-stamp of the event, s is

the source processor and d is the destiny processor. At the end of n

supersteps, all processors send their tuples to a master processor, for

example P0. Afterwards, P0 calculates the minimum number of super-

steps S required to process tuples (t, s, d). Then, if Δ is the simulation

time elapsed since the first and the last tuples were processed, the

time increment is computed as W = Δ∕S. Then, the new W value is

distributed among the processors running the parallel simulation.

5.2 Dynamic time window algorithm

When modelling a WSE, the number of events simulated in each LP

can vary abruptly in different time intervals. This is mainly because

the simulation is driven by traces containing real user queries. In other

words, the simulations reflect the dynamic and unpredictable behavior

of users in a WSE. In this work, we propose to take advantage of this

unpredictable behavior to improve the efficiency and the accuracy of

the approximate simulation. Eg, when the simulation is in a stable state

(a similar number of events is executed during each time window B),

we can reduce the number of updates of W and therefore reduce the

communication and computation costs of the simulation. On the other

hand, if the simulation is in an unstable state (the number of events

executed during each time window B changes drastically) we need to

update W more frequently to reduce the error of the estimated metrics.

Therefore, to improve the performance of parallel simulations and

control the number of stragglers events more efficiently, in this work

we propose to adaptively adjust the number of supersteps (n) elapsed

between 2 consecutive updates of W. To this end, we compute the

moving average45 of previously computed W values to detect burst of

user queries represented in the traces. A sequence of time increments

W1,W2, … ,WN of size N, where Wi is the time increment computed in

the superstep i, is used to compute the moving average (MAw) of size w,

where N > w. The standard deviation 𝜎 on the moving average is used

to compute upper bounds and lower bounds, which define an interval

[MAw − 𝜎,MAw + 𝜎] used to detect unstable states of simulations.

If the new value of W is outside of the interval, the simulation is con-

sidered to be in an unstable state and we update W more frequently

(decrease the value of n). Otherwise, the simulation is considered to be

in a stable state and we update W less frequently (increase the value of

n). To avoid n = 0 and n = ∞ we set 2 thresholds. The threshold 𝜆LOW



INOSTROSA-PSIJAS ET AL. 7 of 15

FIGURE 3 Dynamic algorithm; A, update of W and B, frequency (supersteps - n) of updating W

is used to prevent that the time required to calculate W is greater than

30% of the runtime of the simulation. The threshold 𝜆UP is adjusted so

that the time required to calculate W is 5% of the runtime of the parallel

simulation.

Figure 3 shows the values of W and n obtained when simulating a

WSE with a total of 528 service nodes. The service configuration used

in this experiment is 32 FS, 32 CS partitions and 8 CS replicas, 16 IS

partitions with 15 IS replicas. We simulate different query traffic rates.

At the beginning of the simulation the query traffic is stable. After the

superstep 6000, the query traffic increases emulating a peak of user

queries. Finally, after the superstep 10 000 the query traffic is kept

stable again.

In Figure 3A the x−axis shows the simulation time-advance and the

y−axis shows how W is automatically adjusted every n supersteps. This

figure shows the values of the moving average, the computed value of

W, and the limits of the interval. At the beginning of the simulation there

is a high variability in the values of W. Then, between supersteps 2500

and 5000 the simulation tends to calculate similar values of W, which

indicates that the simulation is in a stable state. Later, the simulation

re-enters in an unstable state.

In Figure 3B, the y-axis shows how the value of n is automatically

adjusted as the simulation time-advance and the new value of W is com-

puted. Between supersteps 2500 and 5000, the value of n tends to grow

until it reaches the maximum value bounded by 𝜆SUP, where it remains

constant for a brief interval. When the value of W becomes unstable,

the value of n tends to decrease to update W more frequently. Thus,

these figures show that the proposed dynamic algorithm can react to

different query traffic represented by the simulated traces.

5.3 Synchronization schemes

In PDES, synchronization mechanisms are used to ensure the correct

execution of events2 and/or to reduce the number of straggler events.3

In particular, Figure 4A describes the approximate synchronous sim-

ulation strategy presented in Marin et al,3 which is based in the BSP

model.28 Assuming that each LP runs on a different processor, in a

superstep i if the emitting LP and the receiving LP are the same, the

event is executed in the current superstep i, if the time-stamp of the

event is lower than the time window (e.tr < B). However, if the emitting

LP and the receiving LP are allocated in different processors the event

will be processed after the barrier synchronization. That is, in the next

superstep i+1. For example, the LP0 sends an event e to LPi in the super-

step i. The time-stamp of the event e is lower than the value of the time

barrier Bi. But, due to the restriction imposed by the synchronous BSP

model, the event e is received in the next superstep when the value of

the time window has been increased to Bi+1 = Bi + W. Therefore, the

event e becomes a straggler event.

The synchronous strategy3 tends to generate stragglers events that

can be avoided in a semi-asynchronous scheme as proposed in this

work. Our algorithm includes I iterations before reaching the time bar-

rier B. During those I iterations, LPs can send and receive events from/to

others LPs. Thus, inside each superstep ended with a time window bar-

rier, we execute I iterations or loops, which allow to receive events from

others LPs in the same superstep they are sent.

Figure 4B shows an example of the proposed strategy. Each LP exe-

cutes local events, sends, and receives events. The LP0 sends an event

to LPi, and the event is received and processed in the same superstep i

before the time window barrier Bi. Thus, the event is not considered a

straggler event.

The number of iterations I is automatically adjusted in each proces-

sor according to I = number of events committed at superstep s
increment in oracle superstep during the current interval

.46,47 The

oracle simulation is effected by executing in each LP an asynchronous

superstep counter code, which is driven by event messages carrying

superstep counts from other LPs. To this end, we maintain one super-

step counter C[i] for each LPi and each event message e carries an

integer e.s indicating the minimum superstep at which this event may

take place in the parallel simulation being synchronized by the oracle

simulation (not the actual optimistic simulation). For each message e

that is received at a given LPi we execute the code: if e.s > C[i] then

C[i] ∶= e.s, and each new event e∗ scheduled by the LPi in another

LPj carries the superstep count e∗.s = C[i] + 1 if j is located in other

processor or e∗.s = C[i] if j is a co-resident LP.

Therefore, our proposed approximate algorithm developed in

PCD++ relaxes the time window barriers by including I iterations

inside the supersteps. This modification turned PCD++ into a

semi-asynchronous parallel simulator, in which events sent among

LPs are pushed into the destination's event list as soon as they arrive.

Thus, events are immediately available for processing reducing the

probability of straggler events.



8 of 15 INOSTROSA-PSIJAS ET AL.

FIGURE 4 Synchronization schemes

5.4 Load balance algorithm

In PCD++, the allocation of atomic models to the different LPs is

defined by the user in an offline fashion by explicitly specifying the pro-

cessor location for each model component. This requires knowledge

about the communication and computation patterns of the simulated

WSE. Moreover, entity migration among LPs is not allowed and PCD++

lacks of dynamic load balance capabilities.

In the WSE modeled with PDEVS, each service node is asso-

ciated with an atomic model. The atomic models communicate to

each other to simulate the query processing process. To reduce the



INOSTROSA-PSIJAS ET AL. 9 of 15

FIGURE 5 Load balance with the Spectral Clustering algorithm

FIGURE 6 Evaluation of partitioning strategies when simulating a WSE with 1040 service nodes

communication costs between atomic models and to balance the work-

load among processors, we use the Spectral Clustering10 algorithm.

The Spectral Clustering algorithm obtains k partitions of the WSE

model, where k is the number of LPs. For this purpose, a similar-

ity matrix based on the multiplicative inverse of all data transmit-

ted between the different atomic models is constructed. Clusters are

built by using the list of cluster algorithm and centers are selected

with the heuristic that maximizes the sum of distances to the previ-

ous selected centers.48 Thus, we obtain groups with equal numbers of

atomic models.

Figure 5 describes the Spectral Clustering algorithm. Two atomic

models are considered close if they have a high degree of communi-

cation. This is represented by a symmetric similarity matrix. Then, the

Laplacian matrix is obtained and the list of cluster algorithm48 is applied

to obtain the set of k clusters whose centers tend to be distant from

each other. Each cluster corresponds to a partition of the model that

is assigned to a processor. Thus, each partition contains the atomic

models that communicate the most.

In a previous work,9 we proposed and evaluated different strategies

for partitioning the WSE simulation model. In this work, we evalu-

ate the proposed strategies with a larger WSE configuration. Figure 6

shows the speed-up and the straggler events rate reported by the

following strategies (1) the user defined (oracle), which requires knowl-

edge about the application and the communication patterns to prop-

erly allocate entities evenly at the different LPs; (2) recursive bisection

implemented with the METIS software*; (3) hash-based which uses

the Fowler-Noll-Vo non-cryptographic hash function; (4) Round robin;

(5) random; and (6) the Spectral Clustering described above. In this

experiment we simulated a WSE with 1040 service nodes.

*http://glaros.dtc.umn.edu/gkhome/views/metis



10 of 15 INOSTROSA-PSIJAS ET AL.

Figure 6A shows that the results obtained by the user defined

(Oracle), the round-robin, and the Spectral Clustering strategies

almost overlap to each other. These strategies present the high-

est speed-up as the number of processors increases. Regarding the

straggler events rate, in Figure 6B we show that the round-robin

and the user defined strategies present more straggler events than

the reported by the Spectral Clustering algorithm. Therefore, as

the Spectral Clustering algorithm uses information about the com-

munication pattern among atomic models, it is capable of obtain-

ing competitive performance and a low number of straggler events

(0.114% for P = 16).

6 EXPERIMENTS

In this section, we evaluate the performance and the accuracy of

the proposed approximate and semi-asynchronous simulation strat-

egy, which uses the Spectral Clustering partitioning algorithm. Exper-

iments were executed using a PDEVS model of a WSE (see Figure 2)

with 2 different services configurations, which is a user defined simu-

lation parameter indicating partitioning and replication levels of each

service of the WSE model (ie, <3,4,5,6,7> specifies a WSE with 3

FS, 4 CS partitions and 5 replicas per partition, and 6 IS parti-

tions with 7 replicas each). In the following, we present experi-

ments with configuration A = <32,32,4,16,30> and configuration

B = <16,16,32,16,32> simulating 640 and 1040 physical processors,

respectively.

To correctly simulate the behavior of a WSE and its relevant costs,

the simulator uses actual query logs. In particular, we use a log of

36 389 567 queries submitted to the America Online Search service. It

was pre-processed according to the rules described in Gan and Suel.41

The costs of the most significant operations of a WSE were measured

on production hardware49 and then used by the PDEVS model to prop-

erly simulate the query processing process.

Experiments were executed on the Deepthought cluster at the ARS

Laboratory at Carleton University using up to 16 HP PROLIANT DL

Servers with Dual 3.2 GHz Intel Xeon processors and 2 GB of RAM

memory. Our proposal was implemented with PCD++ and OpenMPI as

the communication library.

6.1 Simulation strategies

To evaluate the performance and the accuracy of our proposal, we per-

form experiments with the following strategies

• LTW: Lightweight Time Warp.17

• Fixed Window (PCD++ FW): Approximate semi-asynchronous strat-

egy using a time window increment W of fixed size. This is an oracle

algorithm, in which the size of W is precomputed. To this end, we

execute our proposed strategy using the dynamic window algorithm

and we obtain the average of all the W calculated during the sim-

ulation. Therefore, this strategy removes the communication and

computation overhead introduced by the calculation of W.

• Proposal (PCD++ DW): Approximate semi-asynchronous strategy

proposed in this work using the dynamic algorithm to compute the

values of W.

• Asynchronous50 (PCD++ Async): Each processor computes its local

time window barrier B locally. Thus, there is no master processor col-

lecting statistics to compute the time increment W. The fully asyn-

chronous algorithm is implemented on top of the PCD++ framework.

This strategy aims to improve the running time of the approximate

parallel simulations, as a counterpart the accuracy of the algorithms

tends to decrease.

• Synchronous (CPN-DW): The approximate simulation strategy as

presented in Costa et al.49 This strategy uses a synchronous mecha-

nism to control the simulation time-advance and Coloured Petri Net

to model the service nodes of a WSE. The value of W is computed

every n fixed supersteps.

6.2 Performance evaluation

In this section, we evaluate the performance of our proposed approx-

imate and semi-asynchronous simulation strategy. To this end, in the

following figures we show the running times reported by different sim-

ulation approaches. For a better representation, in Figure 7 we com-

pare our proposal with the LTW algorithm and in Figure 8 we show

results for different synchronization schemes.

Figure 7 shows the running time reported by different simulation

strategies when increasing the total number of queries (from 100

to 100 000 queries). Experiments where performed with P = 16

FIGURE 7 Running times obtained for the distributed approximate strategies implemented on top of PCD++ and the LTW strategy with 16
processors. LTW indicates Lightweight Time Warp; DW, dynamic window; FW, fixed window



INOSTROSA-PSIJAS ET AL. 11 of 15

FIGURE 8 Running time reported by the approximate strategies implemented on top of PCD++ and the CPN-DW strategy. The simulations were
executed with 16 processors. DW, indicates dynamic window; FW, fixed window

FIGURE 9 Running time reported by all approximate strategies with different number of processors. DW, indicates dynamic window; FW, fixed
window

processors for configurations A and B. The LTW algorithm was only

executed using 100 and 1000 queries. When simulating more queries,

the executions took too long compared to the approximate strategies

as observed in Figure 7. The behavior of the LTW is due to the inher-

ent communication pattern of the WSE simulation model, in which

each simulated service node of the FS can potentially communicate to

every node of the other services and vice-versa. The outcome is a large

amount of events sent among LPs, which tends to increase the prob-

ability of stragglers and its correspondent rollbacks. For 100 queries

and configuration A, the LTW reports 2 971 766 straggler events and

the execution of each rollback requires in average 4.983e-5 seconds.

The average number of straggler events reported with configuration B

is 3 986 505, and the average time required to execute each rollback

is 5.117e-5 seconds. Therefore, the LTW algorithm is not considered in

the following experiments.

All PCD++ approximate strategies perform well in running times

when compared with the LTW. The PCD++ FW strategy outperforms

our PCD++ DW strategy by 16% and 17% for configurations A and B,

respectively. It is worth to remember that our dynamic strategy stores

and transmits tuples to compute the value of W, which incurs into more

communication than the PCD++ FW strategy. Thus, the overhead intro-

duced by the dynamic algorithm used to compute W periodically is 17%

at most.

Additionally, Figure 7 shows that the PCD++ Async approach reports

running times 43% and 46% lower than the synchronous approaches

for configuration A and B, respectively. This is mainly because the Async

strategy computes W locally in each LP, so there is no communication

overhead neither global barriers.

Figure 8 shows the running time obtained by the different strate-

gies implemented with PCD++ and the synchronous CPN-DW strategy,

as the number of queries increases. This experiment was performed

with P = 16 processors. Both Figure 8A,B corresponding to experi-

ments performed with configuration A and B, respectively, show that

the synchronous CPN approach presents running times almost 3 times

higher than the reported by the proposed semi-asynchronous strat-

egy, say the PCD++ DW strategy. This is achieved mainly by applying

the mechanism that dynamically adjusts n, the number of supersteps

that must elapse before calculating a new value of W, and by applying a

semi-asynchronous mechanism, which allows to process events in the

same superstep they are send. As expected, the oracle PCD++ FW strat-

egy presents running times lower than our proposal. However, again the

algorithm reporting the lower running time is the PCD++ Async.

Figure 9 shows running times for the simulations of a total of 100 000

queries with different number of processors. We show that the PCD++

Async strategy presents the lowest running time. On the other hand,

the PCD++ DW presents running times larger than its synchronous

CPN counterpart when simulations are executed with few processors.

However, when we use more processors (P = 8 and P = 16), our pro-

posed simulation strategy tends to present better performance. This

is because in the CPN-DW strategy, events sent in a superstep s are



12 of 15 INOSTROSA-PSIJAS ET AL.

TABLE 1 Memory consumption (MB) reported by the LTW and the approximate PCD++
strategies running on 16 processors

Configuration A Configuration B

Queries LTW DW FW Async LTW DW FW Async

100 7.4 5.8 6.8 5.6 13 11 13 12

1000 25.9 18 16 17 34 24 22 21

10000 − 141 129 74 − 147 133 83

20000 − 279 243 126 − 284 249 134

30000 − 329 290 178 − 344 302 189

40000 − 513 463 220 − 524 475 231

Abbreviations: LTW indicates Lightweight Time Warp; DW, dynamic window; FW, fixed window

received in the next superstep s + 1. Then, the CPN-DW strategy tends

to increase the total number of supersteps required to finish the simu-

lation. Our experiments reported that the CPN-DW executes in average

33% more supersteps (barrier synchronizations) than the PCD++ DW

strategy.

Table 1 shows the memory consumption reported by the LTW, the

PCD++ Async and the approximate strategies with fixed (FW) and

dynamic (DW) window approaches. The values reported by the FW and

DW under both the proposed semi-asynchronous and the CPN syn-

chronous approaches were very similar. In this table, we show that the

different simulation strategies present similar memory consumption

for small amounts of queries. The results reported by the LTW strategy

to process 100 and 1000 queries, show that it does not drastically con-

sume more memory than the approximate simulations. This is because

of its state saving strategy, which only saves state variables and exter-

nal events, reducing the total amount of events to be saved during the

simulation. Nevertheless, executions with more queries are needed for

a deeper conclusion in regard to the LTW strategy. However, as shown in

previous figures, due to the running time reported by the LTW is clearly

larger than the running time reported by the approximate approaches,

we do not address this issue in this work.

Results obtained with a larger amount of queries (10 000–40 000)

show that the DW approach consumes more memory than the FW

approach. This is basically because the FW does not keep in memory the

tuples required to compute the time increment W. Results show that

the FW approach reduces by 9% in average the memory used by the

DW strategy. In addition, the DW and the FW approaches report more

memory consumption than the PCD++ Async strategy due to the time

barrier B. An event not processed in a superstep is going to be stored in

memory until its time-stamp is lower than B. In particular, with config-

uration A and for 40 000 queries, the PCD++ Async strategy presents

memory consumption 2.33 times lower than the values reported by the

DW approach and 2.1 times lower than the values reported by the FW

approach. The results obtained with configuration B are very similar.

The PCD++ Async strategy is 2.27 times lower than the DW approach

and 2.05 times lower than the FW approach.

Finally, Figure 10 shows the speed-up reported by the different

strategies with P = 2,4,8 and 16 processors for configuration A (top)

and configuration B (bottom). In general, the gain in scalability is not

very high, especially when comparing the PCD++ FW and the PCD++

DW strategies. This is because of the time window barrier used to con-

trol the simulation time-advance, the messages used to calculate the

FIGURE 10 Speed-up achieved by the different parallel simulation
strategies. DW, indicates dynamic window; FW, fixed window

value of W and then propagation of the updated value to all processors,

which increases the communication cost. This graphic shows that the

performance of the CPN-DW strategy tends to decrease as more pro-

cessors are used. As explained before, this behavior is mainly because

the communication constraint imposed by the BSP model. The Async

approach, has the best performance in speed-up, because it does not

use a global time barrier, which main propose is to reduce the rate of

straggler events. However, the lack of this barrier clearly affect scalabil-

ity as shown in the next section.

6.3 Accuracy evaluation

In this section, we evaluate the effectiveness of our proposed approx-

imate and semi-asynchronous simulation strategy. To this end, we

study the straggler events rate, the Pearson correlation, and the

root mean square error of the deviation, which is a measure of

the differences between values obtained by the sequential simula-

tion and the values reported by the parallel simulations. It is defined

as 𝜀m =
√
(
∑

(xi − x̄)2∕(n · (n − 1)), and we calculate the relative

error (er) as 𝜀m∕x̄.

In Figure 11, we show the straggler events rate reported by different

simulation strategies. The PCD++ Async strategy reports the highest

rate from 64.1% to 67.2% for both configurations A (Figure 11A) and

B (Figure 11B). As mentioned above, this is because the PCD++ Async

strategy is designed to improve the performance of simulations, rather

than focusing on maintaining a low rate of straggler events. The mech-

anism used to control the time-advance in each LP is calculated using



INOSTROSA-PSIJAS ET AL. 13 of 15

FIGURE 11 Straggler events rate reported by all approximate simulation strategies implemented with PCD++ and CPN. DW, indicates dynamic
window; FW, fixed window

TABLE 2 Pearson correlation and relative error achieved to estimate
the throughput of a WSE

Configuration A Configuration B

Pearson Relative Error Pearson Relative Error

PCD++DW 0.8748 0.0101 0.8564 0.0124

PCD++FW 0.9373 0.0082 0.9101 0.0088

PCD++ Async 0.8105 0.1954 0.8023 0.2372

CPN-DW 0.8397 0.0202 0.8168 0.0214

Abbreviations: WSE indicates Web search engine; DW, dynamic window;
FW, fixed window

local information. Therefore, there is no global view of the simulation

time-advance.

The CPN-DW presents lower straggler rate than the PCD++ Async

strategy. The number of stragglers events reported by CPN-DW

reaches 29% and 29.3% with configurations A and B, respectively. This

is mainly due to the parallel BSP model,28 in which the events sent in a

time window Bi are available to be processed in the next time window

Bi+1. Thus, the local clock of the receiving LP may have advanced to a

time higher than the time-stamp of the received events.

Regarding the proposed PCD++ DW strategy, the straggler events

rate is much lower. This strategy reports between 12.1% and 13.1%

straggler events rate for configurations A and B, respectively. This is

mainly due to the proposed strategy uses I iterations in each superstep.

Within each iteration it is possible to receive and send messages from

and to other processors, which allows to process events in the same

superstep they are sent. As expected, the oracle strategy (PCD++ FW)

reports a number of straggler events rate slightly lower, which are 9.8%

and 11.4% for configurations A and B, respectively.

In the following, we evaluate the accuracy of our proposal for esti-

mating the throughput and the query response time metrics. We show

results obtained when running the simulations with P = 16. Table 2

shows the Pearson correlation coefficients and the relative errors for

the throughput metric. For both service configurations (A and B), the

Pearson coefficients achieved by all strategies are close to 1 (greater

than 80%), indicating a positive linear correlation between the esti-

mated results obtained by the parallel approximate simulations and the

values reported by the sequential simulation.

The highest Pearson correlations are achieved by the PCD++FW

with values of .9373 and .9101 for configurations A and B, respectively,

followed by our proposal, which is a more realistic strategy, as no pre-

vious simulation executions are required to adjust the value of W. On

the other hand, the PCD++ Async strategy reports the lowest values

of .8105 and .8023 for configuration A and B. The CPN-DW achieves

competitive values.

In concordance with previous results, the PCD++ Async strategy

reports the highest relative errors. More precisely, the PCD++ Async

strategy obtains an error of 19.54% for configuration A and 23.72%

for configuration B. The remaining simulation strategies present lower

error values and similar to each other.

Table 3 shows the Pearson correlation and the relative error for the

query response time. Again, the Pearson correlation tends to be close

to 1, meaning a high correlation between the estimated values and the

exact query response time values achieved by a sequential simulation.

In particular, the oracle PCD++ FW strategy reports a Pearson corre-

lation of .9223 and .9065 for the configurations A and B, respectively.

The lowest correlations are reported by the PCD++ Async strategy

with values of .8098 for configuration A and .7974 for configuration B.

Our proposal, the PCD++ DW strategy, reports a Pearson correlation

of .8664 and .8452. Finally, the synchronous CPN-DW strategy reports

values of .8312 and .8093 for configurations A and B, respectively.

The relative error for the query response time metric follows the

same tendency as showed for the throughput metric. The PCD++ Async

strategy has the highest relative errors of 20.79% and 24.81% for con-

figurations A and B, respectively. Other approximate strategies present

similar relative errors which are below 2.7%.

TABLE 3 Pearson correlation and relative error achieved to estimate
the query response time of a WSE

Configuration A Configuration B

Pearson Relative Error Pearson Relative Error

PCD++ DW 0.8664 0.0153 0.8452 0.0176

PCD++ FW 0.9223 0.0119 0.9065 0.0126

PCD++ Async 0.8098 0.2079 0.7974 0.2481

CPN-DW 0.8312 0.0211 0.8093 0.0263

Abbreviations: WSE indicates Web search engine; DW, dynamic window;
FW, fixed window



14 of 15 INOSTROSA-PSIJAS ET AL.

7 CONCLUSIONS

In this work we presented an approximate and semi-asynchronous sim-

ulation strategy for the PCD++ platform. Our proposal is devised to

model large WSE systems, which are composed by different services

that interact to each other to solve a query. Web search engine presents

modeling and simulation challenges such as drastic changes in user

behavior and collaboration of different services to get the top-k docu-

ment results. To the best of our knowledge, this is the first work intro-

ducing an approximate simulation strategy into the PCD++ framework

for WSE modeled in PDEVS.

Our proposal is based on four elements (1) an approximate algorithm

which aims to improve the running time of the simulations and uses a

window barrier to control the simulation time advance, (2) a dynamic

algorithm used to calculate the elapsed time of two consecutive win-

dow increment updates, (3) a semi-asynchronous scheme which aims to

reduce the number of straggler events, and (4) a load balance algorithm

used to automatically allocate the LPs into processors. Results show

that our proposed strategy outperforms the optimistic LTW approach.

We also are capable of reducing the number of straggler events in com-

parison to a synchronous and an asynchronous approximate simulation

strategies.

ACKNOWLEDGMENTS

The autors would like to thank to Basal funds FB0001, Conicyt, Chile;

Veronica Gil-Costa also thanks to PICT-2014-1146 and Basal project

USA1555 USACH-MECESUP; and Gabriel Wainer thanks to NSERC,

Canada and CFI, the Canadian Foundation for Innovation.

REFERENCES

1. Boukerche A, Das SK. Dynamic load balancing strategies for conserva-
tive parallel simulations. SIGSIM Simul Dig. 1997;27(1):20-28.

2. Fujimoto RM. Parallel discrete event simulation. Commun ACM.
1990;33(10):30-53.

3. Marin M, Gil-Costa V, Bonacic C, Solar R. Approximate parallel simula-
tion of web search engines. Proceedings of the 2013 ACM SIGSIM Con-
ference on Principles of Advanced Discrete Simulation, SIGSIM-PADS'13.
ACM, New York, NY, USA; 2013:189-200.

4. Zeigler BP, Kim TG, Praehofer H. Theory of Modeling and Simulation.
Orlando, FL, USA: Academic Press Inc.; 2000.

5. Wainer G. Discrete-Event Modeling and Simulation: A Practitioner
Approach. Boca Raton, FL, USA: CRC Press. Taylor and Francis; 2009.

6. Wainer G. Experiences with devs modeling and simulation. J Model
Simul (Acta Press). 2001;21(2):138-147.

7. Inostrosa-Psijas A, Wainer GA, Costa VG, Marín M. Devs modeling of
large scale web search engines. Proceedings of the 2014 Winter Simula-
tion Conference, Savannah, GA, USA; December 7-10, 2014:3060-3071.

8. Liu Q, Wainer G. Parallel environment for devs and cell-devs models.
Simulation 2007;6(83):449-471.

9. Inostrosa-Psijas A, Costa VG, Solar R, Marín M. Load balance strategies
for DEVS approximated parallel and distributed discrete-event simu-
lations. 23rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, PDP 2015, Turku, Finland; March 4-6,
2015:337-340.

10. Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an
algorithm. Advances in Neural Information Processing Systems. Vancouver,
British Columbia, Canada; December 3-8, 2001:849-856.

11. Fujimoto RM. Parallel and Distribution Simulation Systems. 1st ed. New
York, NY, USA: John Wiley & Sons, Inc.; 1999.

12. Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R. A
toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Softw Pract Exper.
2011;41(1):23-50.

13. Kunkel J. Using Simulation to Validate Performance of MPI(-IO) Imple-
mentations. Supercomputing; 2013:181-195.

14. Quaglia F, Baldoni R. Exploiting intra-object dependencies in parallel
simulation. Inf Process Lett. 1999;70(3):119-125.

15. Quaglia F, Beraldi R. Space uncertain simulation events: Some con-
cepts and an application to optimistic synchronization. Proceedings of
the Eighteenth Workshop on Parallel and Distributed Simulation, Kufstein,
Austria; 2004:181-188.

16. Rao DM, Thondugulam NV, Radhakrishnan R, Wilsey PA. Unsynchro-
nized parallel discrete event simulation. Proceedings of the 30th Confer-
ence on Winter Simulation,Washington, DC, USA; 1998:1563-1570.

17. Liu Q, Wainer GA. Lightweight time warp a novel protocol for par-
allel optimistic simulation of large-scale devs and cell-devs mod-
els. IEEE/ACM International Symposium on Distributed Simulation and
Real-Time Applications, 2008:131-138.

18. Liu J, Rong R. Hierarchical composite synchronization. PADS, 2012,
Zhangjiajie, China; July 15-19, 2012:15-19.

19. Jafer S, Wainer GA. A performance evaluation of the conservative
devs protocol in parallel simulation of devs-based models. SpringSim
(TMS-DEVS), Boston, MA, USA; 2011:103-110.

20. Fujimoto RM. Exploiting temporal uncertainty in parallel and dis-
tributed simulations. Proceedings of the Thirteenth Workshop on Parallel
and Distributed Simulation, Atlanta, GA, USA; 1999:46-53.

21. Ball D, Hoyt S. The adaptive timewarp concurrency control algorithm.
SCS Multiconference Distrib Simul. 1990;22(1):174-177.

22. Panesar K, Fujimoto R. Adaptive flow control in time warp. 11th
Workshop on Parallel and Distributed Simulation (PADS'97), Austria;
1997:108-115.

23. Sokol L, Briscoe D, Wieland A. MTW: A strategy for scheduling discrete
simulation events for concurrent execution. In SCS Multiconference on
Distributed Simulation 19 3, San Diego, California, USA; 1988:34-42.

24. Lubachevsky B, Weiss A. An analysis of rollback-based simulation. ACM
Trans Model Comput Simul. 1991;1(2):154-193.

25. Turner S, Xu M. Performance evaluation of the Bounded Time Warp
algorithm. 6th Workshop on Parallel and Distributed Simulation (PADS'92),
Newport Beach, California; 1992:117-126.

26. Steinman J. SPEEDES: a multiple-synchronization environment
for parallel discrete event simulation. Int J Comput Simul.
1992;2(3):251-286.

27. Steinman J. Discrete-event simulation and the event-horizon. 8th
Workshop on Parallel and Distributed Simulation (PADS'94), Edinburgh,
Scotland ; 1994:39-49.

28. Valiant LG. A bridging model for parallel computation. Commun ACM.
1990;33(8):103-111.

29. Chow ACH, Zeigler BP. Parallel devs: A parallel, hierarchical, mod-
ular, modeling formalism. Winter Simulation Conference, Orlando, FL;
1994:716-722.

30. ACIMS. Devs java. http://acims.asu.edu/software. Accessed March 28,
2017. Revised: 2014-05-05.

31. Filippi JB, Bisgambiglia P. Jdevs: an implementation of a devs based for-
mal framework for environmental modelling. Environ Model Software.
2004;19(3):261-274.

32. Touraille L, Traoré MK, Hill DRC. A model-driven software environ-
ment for modeling, simulation and analysis of complex systems. Pro-
ceedings of the 2011 Symposium on Theory of Modeling & Simulation:
DEVS Integrative M&S Symposium, Boston, MA, USA; April 3-7, 2011:
229-237.

33. Wainer GA. Cd++: a toolkit to develop devs models. Softw Pract Exper.
2002;32(13):1261-1306.

http://acims.asu.edu/software.


INOSTROSA-PSIJAS ET AL. 15 of 15

34. Wainer GA. Improved cellular models with parallel cell-devs. Trans Soc
Comput Simul Int. 2000;17(2):73-88.

35. Liu Q. Distributed Optimistic Simulation of Devs and Cell-Devs Models
with Pcd++. Master's thesis, Carleton University, 2006.

36. Jafer S. New Algorithms for the Parallel Cd++ Simulation Environment.
Master's thesis, Carleton University, 2007.

37. Barroso LA, Dean J, Hölzle U. Web search for a planet: the google
cluster architecture. Micro. 2003;23:22-28.

38. Freire VFA, Cacheda F, Carneiro V. Analysis of performance evaluation
techniques for large scale information retrieval. LSDS-IR, Rome, Italy;
2013:215-226.

39. Gil-Costa V, Lobos J, Inostrosa-Psijas A, Marín M. Capacity planning for
vertical search engines An approach based on coloured petri nets. Petri
Nets, Hamburg, Germany; 2012:288-307.

40. Badue CS, Almeida JM, et al. Capacity planning for vertical search
engines. CoRR, abs/1006.5059, 2010.

41. Gan Q, Suel T. Improved techniques for result caching in web search
engines. WWW, Madrid, Spain; 2009:431-440.

42. Fitzpatrick B. Distributed caching with memcached. J Linux.
2004;2004:72-76.

43. Zobel J, Moffat A. Inverted files for text search engines. J CSUR.
2006;38(2):6.1-6.56.

44. Broder AZ, Carmel D, Herscovici M, Soffer A, Zien JY. Efficient query
evaluation using a two-level retrieval process. CIKM, Louisiana, USA;
2003:426-434.

45. Vlachos M. Identifying similarities, periodicities and bursts for online
search queries. Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data and Symposium on Principles Database and
Systems, Paris, France; June 13-18, 2004:131-142.

46. Marin M. An empirical assessment of optimistic PDES on BSP. 10th
SCS European Simulation Symposium (ESS 1998), Nottingham, United
Kingdom; 1998.

47. Marin M. Discrete-Event Simulation On The Bulk-Syncrhonous Parallel
Model. PhD thesis, Oxford University, 1998.

48. Navarro G. A compact space decomposition for effective metric index-
ing. Pattern Recognit Lett. 2005;26:295-306.

49. Costa VG, Marín M, Inostrosa-Psijas A, Lobos J, Bonacic C. Modelling
search engines performance using coloured petri nets. Fundam Inform.
2014;131(1):139-166.

50. Gil-Costa V, Tapia E, Marin M. Asynchronous approximate simulation
algorithm for stream processing platforms (wip). Summer Comput Simul
Conf, Montreal, Canada; 2016:521-526.

How to cite this article: Inostrosa-Psijas A, Gil-Costa V,

Marin M, Wainer G . Semi-asynchronous approximate parallel

DEVS simulation of web search engines. Concurrency Computat

Pract Exper. 2018;30:e4149. https://doi.org/10.1002/cpe.4149

https://doi.org/10.1002/cpe.4149

	Semi-asynchronous approximate parallel DEVS simulation of web search engines
	Abstract
	Introduction
	Related Work
	PDEVS Overview
	Web Search Engines
	Query Processing
	Modeling WSE withxmltex ?> PCD++

	PCD++ SEMI-ASYNCHRONOUS APPROXIMATE SIMULATIONS
	Approximate algorithm
	Dynamic time window algorithm
	Synchronization schemes
	Load balance algorithm

	EXPERIMENTS
	Simulation strategies
	Performance evaluation
	Accuracy evaluation

	CONCLUSIONS
	References


